Abstract
Transiting planet light curves have historically been used predominantly for measuring the depth and hence ratio of the planet–star radii, p. Equations have previously been presented by Seager & Mallén-Ornelas for the analysis of the total and trough transit light-curve time to derive the ratio of semimajor axis to stellar radius, a/R*, in the case of circular orbits. Here, a new analytic model is proposed which operates for the more general case of an eccentric orbit. We aim to investigate three major effects our model predicts: (i) the degeneracy in transit light-curve solutions for eccentricity, e > 0; (ii) the asymmetry of the light curve and the resulting shift in the mid-transit time, TMID; (iii) the effect of eccentricity on the ingress and egress slopes. It is also shown that a system with changing eccentricity and inclination may produce a long-term transit time variation (LTTV). Furthermore, we use our model in a re-analysis of HD 209458b archived data by Richardson et al., where we include the confirmed non-zero eccentricity and derive a 24-μm planetary radius of RP= 1.275RJ± 0.082RJ (where RJ= 1 Jovian radius), which is ∼1 per cent larger than if we assume a circular orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.