Abstract

We study the distribution of transit times in Monte Carlo simulations of the Gaussian disorder model (GDM). The GDM is one of the most successful models to describe the charge transport in random organic materials. The transit time is the time it takes for a charge carrier to travel across a sample. We find that the distribution of transit times over many charge carriers and over different realizations of Gaussian energies shows a heavy tail in the long time limit at low temperatures. This heavy tail can be described by a power law with an exponent that depends on temperature. This sets a limitation on the calculation of mobility of charge carriers using an average transit time at low temperatures. We discuss the implication of these results on dispersive transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.