Abstract

A technique for chaining the transistors in the layouts of static CMOS leaf cells is presented and analyzed. This new method is superior to existing techniques, since it can operate on a more general class of circuits and is very efficient. It is shown that the layout width of a CMOS leaf cell can be significantly reduced (nearly 40% in the average case) by transistor chaining. Moreover, more than half of the switching functions of four variables have optimal CMOS circuit implementations with non-series/parallel topologies. Therefore, the use of non-series/parallel circuits can have a positive global impact on layout area and performance. The transistor chaining technique presented in this paper produces the optimal solution for 82.5% of the circuits tested, and has linear time complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.