Abstract

A classic challenge in chemical sensing is selectivity. Metal-organic frameworks (MOFs) are an exciting class of materials because they can be tuned for selective chemical adsorption. Adsorption events trigger work-function shifts, which can be detected with a chemical-sensitive field-effect transistor (power ≈microwatts). In this work, several case studies were used towards generalizing the sensing mechanism, ultimately towards our metal-centric hypothesis. HKUST-1 was used as a proof-of-principle humidity sensor. The response is thickness independent, meaning the response is surface localized. ZIF-8 is demonstrated to be an NO2 -sensing material, and the response is dominated by adsorption at metal sites. Finally, MFM-300(In) shows how standard hard-soft acid-base theory can be used to qualitatively predict sensor responses. This paper sets the groundwork for using the tunability of metal-organic frameworks for chemical sensing with distributed, scalable devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.