Abstract

Transintestinal cholesterol excretion (TICE) is an alternate pathway to hepatobiliary secretion. Our study aimed at identifying molecular mechanisms of TICE. We studied TICE ex vivo in mouse and human intestinal explants, and in vivo after bile diversion and intestinal cannulation in mice. We provide the first evidence that both low-density lipoprotein (LDL) and high-density lipoprotein deliver cholesterol for TICE in human and mouse jejunal explants at the basolateral side. Proprotein convertase subtilisin kexin type 9 (PCSK9)(-/-) mice and intestinal explants show increased LDL-TICE, and acute injection of PCSK9 decreases TICE in vivo, suggesting that PCSK9 is a repressor of TICE. The acute repression was dependent on the LDL receptor (LDLR). Further, TICE was increased when mice were treated with lovastatin. These data point to an important role for LDLR in TICE. However, LDLR(-/-) mice showed increased intestinal LDL uptake, contrary to what is observed in the liver, and tended to have higher TICE. We interpret these data to suggest that there might be at least 2 mechanisms contributing to TICE; 1 involving LDL receptors and other unidentified mechanisms. Acute modulation of LDLR affects TICE, but chronic deficiency is compensated for most likely by the upregulation of the unknown mechanisms. Using mice deficient for apical multidrug active transporter ATP-binding cassette transporter B1 a and b, and its inhibitor, we show that these apical transporters contribute significantly to TICE. TICE is operative in human jejunal explants. It is a metabolically active process that can be acutely regulated, inversely related to cholesterolemia, and pharmacologically activated by statins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call