Abstract

BackgroundWolbachia are maternally inherited endosymbiotic bacteria that manipulate the reproductive success of their insect hosts. Uninfected females that mate with Wolbachia infected males do not reproduce due to cytoplasmic incompatibility (CI). CI results in the increased frequency of Wolbachia-infected individuals in populations. Recently, two Wolbachia strains, the benign wMel and virulent wMelPop have been artificially transinfected into the primary vector of dengue virus, the mosquito Ae. aegypti where they have formed stable infections. These Wolbachia infections are being developed for a biological control strategy against dengue virus transmission. While the effects of Wolbachia on female Ae. aegypti have been examined the effects on males are less well characterised. Here we ascertain and compare the effects of the two strains on male fitness in resource-limited environments that may better approximate the natural environment.MethodsA series of population mating trials were conducted to examine the effect of Wolbachia infection status (with strains wMel and wMelPop) and male larval nutrition on insemination frequency, remating rates, the fecundity of females, the hatch rates of eggs and the wing length and fertility of males.ResultswMel and wMelPop infections reduce the fecundity of infected females and wMelPop reduces the viability of eggs. Low nutrition diets for males in the larval phase affects the fecundity of wMel-infected females. Neither strain of Wolbachia affected sperm quality or viability or the ability of males to successfully mate multiple females.ConclusionsThe benign strain of Wolbachia, wMel causes similar reductions in fecundity as the more virulent, wMelPop, and neither are too great that they should not still spread given the action of CI. The ability of Wolbachia-infected males to repeat mate as frequently as wildtype mosquitoes indicates that they will be very good agents of delivering CI in field release populations.

Highlights

  • Wolbachia are maternally inherited endosymbiotic bacteria that manipulate the reproductive success of their insect hosts

  • Wolbachia are maternally inherited endosymbiotic bacteria that naturally infect over half of all insect species [1]

  • Two different Wolbachia strains, native to Drosophila melanogaster, have been artificially transinfected into the primary vector of dengue virus, the mosquito Aedes aegypti, where they have formed stable infections [2,3]. These artificially created lines are the cornerstone of a biological control program to limit dengue transmission to humans that has progressed from the bench [2] to field cages [3] to open field releases [4]

Read more

Summary

Introduction

Wolbachia are maternally inherited endosymbiotic bacteria that manipulate the reproductive success of their insect hosts. Two Wolbachia strains, the benign wMel and virulent wMelPop have been artificially transinfected into the primary vector of dengue virus, the mosquito Ae. aegypti where they have formed stable infections. Two different Wolbachia strains, native to Drosophila melanogaster, have been artificially transinfected into the primary vector of dengue virus, the mosquito Aedes aegypti, where they have formed stable infections [2,3]. These artificially created lines are the cornerstone of a biological control program to limit dengue transmission to humans that has progressed from the bench [2] to field cages [3] to open field releases [4]. The result is that only older mosquitoes surviving past this age can transmit virus, making lifespan reduction an attractive means for reducing transmission at the population level [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call