Abstract
The measurement of Soret coefficients in liquids is not easy and usually not very precise because the resulting concentration gradient is small and moreover can be perturbed by undesired convection currents. In order to suppress, or to drastically reduce these convection currents, the use of a porous medium is sometimes suggested. The question arises as to whether the Soret coefficient is the same in free fluid and in porous medium. This is the aim of this paper. To this end, for a given liquid mixture, the time evolution of the vertical concentration gradient is experimentally measured in the same thermodiffusion cell filled first with the free liquid and next with a porous medium followed by saturation by the liquid mixture. Both the isothermal diffusion (Fick) coefficient and the Soret coefficient can be deduced, providing that a correct working equation is used. The proposed equation results from integration of the general mass conservation equation with realistic boundary conditions (zero mass flux at the boundaries) and some simplifying assumptions rendering this equation more tractable than the one proposed some decades ago by Bierlein (J.A. Bierlein, J. Chem. Phys. 23, 10 (1955)). The method is applied here to an electrolytic solution (CuSO4, 0.25 M) at a mean temperature of 37 degrees C. The Soret coefficients in free and porous medium (zircon microspheres in the range of 250-315 x 10(-6) m) may be considered to be equal ( S(T) = 13.2+/-0.5 x 10(-3) K(-1)) and the tortuosity factors for the packed medium are the same relative to thermodiffusion and Fick coefficients (tau = 1.51+/-0.02).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.