Abstract
We analyse natural gradient learning in a two-layer feed-forward neural network using a statistical mechanics framework which is appropriate for large input dimension. We find significant improvement over standard gradient descent in both the transient and asymptotic phases of learning.KeywordsLearning RateGradient DescentFisher InformationFisher Information MatrixGeneralization ErrorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.