Abstract

Iron is an essential nutrient for the bacterial pathogen Staphylococcus aureus . Heme in hemoglobin (Hb) is the most abundant source of iron in the human body and during infections is captured by S. aureus using iron-regulated surface determinant (Isd) proteins. A central step in this process is the transfer of heme between the cell wall associated IsdA and IsdC hemoproteins. Biochemical evidence indicates that heme is transferred via an activated IsdA:heme:IsdC heme complex. Transfer is rapid and occurs up to 70,000 times faster than indirect mechanisms in which heme is released into the solvent. To gain insight into the mechanism of transfer, we modeled the structure of the complex using NMR paramagnetic relaxation enhancement (PRE) methods. Our results indicate that IsdA and IsdC transfer heme via an ultraweak affinity "handclasp" complex that juxtaposes their respective 3(10) helices and β7/β8 loops. Interestingly, PRE also identified a set of transient complexes that could represent high-energy pre-equilibrium encounter species that form prior to the stereospecific handclasp complex. Targeted amino acid mutagenesis and stopped-flow measurements substantiate the functional relevance of a PRE-derived model, as mutation of interfacial side chains significantly slows the rate of transfer. IsdA and IsdC bind heme using NEAr Transporter (NEAT) domains that are conserved in many species of pathogenic Gram-positive bacteria. Heme transfer in these microbes may also occur through structurally similar transient stereospecific complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.