Abstract
Background and ObjectiveHaemodynamic metrics, such as blood flow induced shear stresses at the inner vessel lumen, are associated with the development and progression of coronary artery disease. Understanding these metrics may therefore improve the assessment of an individual’s coronary disease risk. However, the calculation of such luminal Wall Shear Stress (WSS) using traditional Computational Fluid Dynamics (CFD) methods is relatively slow and computationally expensive. As a result, CFD based haemodynamic computation is not suitable for integrated and large-scale use in clinical settings. MethodsIn this work, deep learning techniques are proposed as an alternative method to CFD, whereby luminal WSS magnitude can be predicted in coronary bifurcations throughout the cardiac cycle based on the steady state solution (which takes <120 seconds to calculate including preprocessing), vessel geometry and additional global features. The deep learning model is trained on a dataset of 101 patient-specific and 2626 synthetic left main bifurcation models with 26 separate patient-specific cases used as the test set. ResultsThe model showed high fidelity predictions with <5% (normalised against mean WSS magnitude) deviation to CFD derived values as the gold-standard method, while being orders of magnitude faster with on average <2 minutes versus 3 hours computation for transient CFD. ConclusionsThis method therefore offers a new approach to substantially reduce the computational cost involved in, for example, large-scale population studies of coronary haemodynamic metrics, and may therefore open the pathway for future clinical integration.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.