Abstract

An experimental investigation for the time dependent volumetric heat transfer coefficient of the bubbles type, three-phase direct contact condenser has been carried out utilising a short column (70 cm in total height and 4 cm inner diameter). A 47 cm active height was chosen with five different mass flow rate ratios and three different initial dispersed phase temperatures. Vapour pentane and constant temperature tap water as dispersed and continuous phases were implemented. The results showed that the volumetric heat transfer coefficient decreases with increased time until it almost reaches its steady state conditions. A sharp decrease in the volumetric heat transfer coefficient was found at the beginning of the operation and, diminished over a short time interval. Furthermore, a positive effect of the mass flow rate ratios on the volumetric heat transfer coefficient was noted and this was more pronounced at the beginning of the operation. On the other hand, the volumetric heat transfer coefficient decreased with an increase in the continuous phase mass flow rate and there was no considerable effect of the initial dispersed phase temperatures, which confirms that latent heat transfer is dominant in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.