Abstract

This article presents transient handling analysis with a full-vehicle non-linear multi-body dynamic model, having 102 degrees of freedom. A transient cornering manoeuvre, with a constant steer angle and velocity has been undertaken. The effects of aerodynamic lift and drag forces have been included in the simulation tests. The vehicle handling characteristics with and without aerodynamic forces have been compared and various observations made. The aerodynamic forces have been predicted by a k-ε model solution of the Navier-Stokes equations for turbulent flow. The numerical predictions for the evaluation of aerodynamic lift coefficient agrees well with the scaled-down air tunnel experimental work, using hot-wire anemometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.