Abstract
AbstractDuring the early to mid‐Miocene, benthic δ18O records indicate large ice volume fluctuations of the Antarctic ice sheet (AIS) on multiple timescales. Hitherto, research has mainly focused on how CO2 and insolation changes control an equilibrated AIS. However, transient AIS dynamics remain largely unexplored. Here, we study Miocene AIS variability, using an ice sheet‐shelf model forced by climate model output with various CO2 levels and orbital conditions. Besides equilibrium simulations, we conduct transient experiments, gradually changing the forcing climate state over time. We show that transient AIS variability is substantially smaller than equilibrium differences. This reduces the contribution of the AIS to δ18O fluctuations by more than two thirds on a 40‐kyr timescale, hence requiring a larger contribution by deep‐sea‐temperature variability. The growth rates are much slower than the decay rates, which ensures variability around a preferred small state. Finally, if the bedrock topography enlarges the West Antarctic land surface, AIS self‐sustenance increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.