Abstract

Transient UV resonance Raman measurements excited within the amide pi --> pi transitions of a 21 unit alpha-helical peptide has for the first time determined a lower bound for the unfolding rate of the last alpha-helical turn to form a fully random coil peptide. A 3 ns T-jump is generated with 1.9 microm laser pulses, which are absorbed by water. Subsequent 3 ns 204 nm UV pulses excite the amide Raman spectra at delay times between 3 ns and 1 ms, to monitor the peptide conformational evolution. We find approximately 180 ns relaxation times which result in a rate constant of >5 x 10(6) s(-1) for unfolding of the last alpha-helical turn. Our data are inconsistent with slow alpha-helix nuclei melting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call