Abstract
A temporal model based on the Biot theory is developed to describe the transient ultrasonic propagation in porous media with elastic structure, in which the viscous exchange between fluid and structure are described by fractional derivatives. The fast and slow waves obey a fractional wave equation in the time domain. The solution of Biot's equations in time depends on the Green functions of each of the waves (fast and slow), and their fractional derivatives. The reflection and transmission operators for a slab of porous materials are derived in the time domain, using calculations in the Laplace domain. Their analytical expressions, depend on Green's function of fast and slow waves. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.