Abstract

Persistent dephosphorylation has been implicated in the molecular mechanisms of long-term depression (LTD). Dephosphorylation may be due to either a persistent increase in phosphatase activity or a persistent decrease in kinase activity. We have previously found that protein kinase Mζ (PKMζ), the autonomously active form of the atypical PKCζ isozyme that increases in long-term potentiation (LTP), decreases in LTD. This is consistent with the hypothesis that decreased levels of phosphorylation by PKC are important in LTD. Recently, however, increased phosphorylation by PKC has also been implicated in LTD. These contradictory results might be explained, in part, by the multiple isoforms of PKC, which may be independently regulated during the different phases of LTD. We now find that 45 s after low-frequency (3 Hz) stimulation that induces LTD in the CA1 region of hippocampal slices, conventional Ca 2+/lipid-dependent PKC isoforms translocate from the cytosol to the membrane. This translocation was transient, lasting less than 15 min. In contrast, PKMζ was persistently decreased through 2 h of LTD maintenance. Therefore, the activation and downregulation of distinct PKC isoforms may participate in the induction and maintenance mechanisms of LTD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.