Abstract

Detailed analyses of the physical parameters inherent in the microprojectile bombardment technology necessary to produce optimum transient β-glucuronidase (GUS) expression were undertaken in pollen and embryogenic tissues of white spruce. Higher helium pressure used for microprojectile bombardment resulted in lower GUS expression in pollen, but in higher GUS expression in embryogenic tissues. Modification of the osmoticum of the culture medium had a limited effect on GUS transient expression in pollen but substantially increased the transient expression in embryogenic tissues. The viability of transformed pollen was not affected by the bombardment procedure. This is the first detailed analysis of microprojectile bombardment technology reporting the conditions needed for optimum transient transformation of pollen and embryogenic tissues of white spruce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.