Abstract

New evidence for dynamic behavior and flexible oligomeric structure of the molecular chaperone α-crystallin is presented. Based on the results of laser dynamic light scattering, centrifugal ultrafiltration, size exclusion chromatography, analytical ultracentrifugation and electrophoresis in polyacrylamide gel, addition of α-crystallin to fully reduced α-lactalbumin, used as a model protein substrate, at the stage of its start aggregate formation results in dissociation of multimeric structure of α-crystallin. In addition to large oligomers, transient low-sized assemblies are formed with the apparent molecular mass of 50–55kDa that corresponds to the α-crystallin dimeric form associated with destabilized monomeric α-lactalbumin. This phenomenon is suggested to represent an essential component of a transient protective mechanism tuning the stressed protein to binding sites on the exposed surface of the chaperone dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.