Abstract
In this letter, a mathematical model for transient nature thin film flow of Maxwell nanofluid over a rotating disk is studied in the presence of a uniform magnetic field and non-linear thermal radiation. The Brownian motion and thermophoresis features due to nanofluid are captured by adopting the Buongiorno model. The prime emphasize is to explore the temperature field and nanoparticles volume fraction in nanofluid thin film flow. The reduced system of differential equations is solved numerically by finite difference based method namely bvp4c. The numerical outcomes regarding film thickness, Nusselt number, Sherwood number, velocity, temperature, and concentration are revealed for varying estimation of involved physical parameters. It is shown that the film thickness decreases with increasing values of the magnetic number. Further, the impact of thermophoresis and thermal radiation parameters is worthwhile in enhancing the fluid temperature. The Solute concentration is found to decrease with Brownian motion and Schmidt number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.