Abstract

In the current paper, a generalization of the results of Zhao et al. (2008) on a new design of C/C composite multidisc brake system is presented. The purpose of this paper is to study the effect of thermal sensitivity of Carbon/Carbon (C/C) composite material on the temperature distributions, deformation, and stress during braking. In this regard, a transient temperature–displacement coupled analysis for C/C composite brake discs with frictional heat generation under simulated operating conditions is performed. An axisymmetric model for brake system is used for the finite element analysis according to the theory of energy transformation and transportation. The transient temperature distributions on the friction surfaces, deformation, and stress are obtained. To check the validity, the results are corroborated with other solutions available in the literature, wherever possible. The current study could be used as a guide in the initial design of a high performance multidisc brake system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call