Abstract

A hybrid numerical method of the Laplace transformation and the finite difference method is applied to solve the transient thermoelastic problem of an annular fin, in which the thermomechanical coupling effect is taken into account in the governing equation of heat conduction and the heat transfer coefficient is a function of the radius of the fin. The general solutions of the governing equations are first solved in the transform domain. Then the inversion to the real domain is completed via the method of matrix similarity transformation and Fourier series technique. The transient distributions of temperature increment and thermal stresses of the fin in the real domain are calculated numerically. The presented method is more efficient in computing time and is applicable to other types of boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.