Abstract

PurposeThe purpose of this paper is to reveal the transient thermo-elasto-hydrodynamic lubrication mechanism of a bidirectional thrust bearing in a pumped-storage unit, and to propose the transient simulation method of two-way fluid-solid-thermal interaction of thrust bearing.Design/methodology/approachThe transient fluid-solid-thermal interaction method is used to simulate the three-dimensional lubrication of the thrust bearing, during the start-up and shutdown process of a pumped storage unit. A pad including an oil hole is modelled to analyze the temporal variation of lubrication characteristics, such as the film pressure, thickness and temperature, during the transient operation process.FindingsThe injection of the high-pressure oil sufficiently affects the lubrication characteristics on film, in which the hysteresis phenomena were found between the start-up and shutdown possess.Originality/valueThis paper reveals the transient lubrication mechanism of tilting pad in a thrust bearing, by means of transient fluid-solid-thermal interaction method. Lubrication characteristics are simulated without assuming the temperature relationship between the oil film inlet and the outlet and the heat transfer on the pad free surface. This paper provides a theoretical basis for the safe design and stable operation of thrust bearings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call