Abstract

Laser-assisted machining (LAM), in which the material is locally heated by an intense laser source prior to material removal, provides an alternative machining process with the potential to yield higher material removal rates, as well as improved control of workpiece properties and geometry, for difficult-to-machine materials such as structural ceramics. To assess the feasibility of the LAM process and to obtain an improved understanding of governing physical phenomena, a laser assisted machining facility was developed and used to experimentally investigate the thermal response of a rotating silicon nitride workpiece heated by a translating CO2 laser. Using a focused laser pyrometer, surface temperature history measurements were made to determine the effect of rotational and translational speed, as well as the laser beam diameter and power, on thermal conditions. The experimental results are in good agreement with predictions based on a transient three-dimensional numerical simulation of the heating process. With increasing workpiece rotational speed, temperatures in proximity to the laser spot decrease, while those at circumferential locations further removed from the laser increase. Near-laser temperatures decrease with increasing beam diameter, while energy deposition by the laser and, correspondingly, workpiece surface temperatures increase with decreasing laser translational speed and increasing laser power, In a companion paper (Rozzi et al., 1998), the detailed numerical model is used to further elucidate thermal conditions associated with laser heating and to assess the merit of a simple, analytical model which is better suited for online process control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call