Abstract

The transient behavior of an axial-cracked hollow circular cylinder subjected to a sudden heating is investigated. It is shown that surface heating may induce compressive thermal stress near the inner surface of the cylinder which in turn may force the cracked surfaces to close together. Assuming that the existence of the crack does not alter the temperature distribution, this problem can be divided into two parts and solved by the principle of superposition. First, the temperature and transient thermal stress distributions along the axisymmetric surface of the imaginary cylinder without a crack are obtained by finite element/implicit time integration method. The calculated temperature and thermal stress distributions are in good agreement with the values predicted by the analytical method. Secondly, the opposite senses of the stress distributions along the cracked surfaces, which are obtained previously, are treated as the traction boundary conditions, and the contact length and contact pressure of the real cracked cylinder are obtained by a modified elimination finite element scheme. In this scheme, the concepts of contact-node-pairs' penetration, contact-double-forces and compliance matrix are introduced. The calculated results indicate that the contact length ratio becomes smaller when the crack length ratio increases, and becomes larger as the radius ratio increases. Finally, the normalized stress intensity factor for the crack tip of the cylinder is obtained. It is shown that the larger the crack length ratio the higher the stress intensity factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call