Abstract

A numerical solution of the transient heat conduction problem with spatiotemporally variable conductivity in 2D space is obtained using the Meshless Local Petrov–Galerkin (MLPG) method. The approximation of the field variables is performed using Moving Least Squares (MLS) interpolation. The accuracy and the efficiency of the MLPG schemes are investigated through variation of (i) the domain resolution, (ii) the order of the basis functions, (iii) the shape of the integration site around each node, (iv) the conductivity range, and (v) the volumetric heat capacity range. Steady-state boundary conditions of the essential type are assumed. The results are compared with those calculated by a typical Finite Element method. Specific rectangular-type integration sites are introduced during both steady-state and transient MLPG integration, in order to provide complete surface coverage of the domain without overlapping, and the accuracy of the method is demonstrated in all cases studied. Computational efficiency is also investigated with this MLPG method and found to be slower than FE methods during construction stage, but it clearly surpasses that of FEM approaches during the solution stage on a wide parameter range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.