Abstract

The transient thermal behavior in the cryogenic oxidizer tank for the liquid propulsion system of the KSLV-I satellite launching space vehicle is theoretically investigated for the pressurization process by gaseous helium injection followed by the readiness check stage. The numerical model is established using the transient mass and energy conservation of oxygen/helium mixtures both in ullage and liquid regions. At the liquid-gas interface, various modes of heat and mass transfer are considered, including the liquid evaporation and the helium absorption. The present study focuses on the effects of the increasing pressurization level on some of important properties that should be considered in the propulsion system design, such as tank pressure, ullage gas temperature, and evaporation of liquid oxygen. Particularly, the tank pressure drop after the pressurization is investigated in the proposed design of propulsion system. Also, the effect of the initial loading of liquid oxygen in the oxidizer tank is studied and discussed. As for the helium absorption into the liquid region, its mass is negligibly small and it should not be the concern in design and operation of the oxidizer tank system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.