Abstract

During the Late Palaeogene between ~40 and 23 million years ago (Ma), Earth transitioned from a warm non-glaciated climate state and developed large dynamic ice sheets on Antarctica. This transition is largely inferred from the deep-sea oxygen isotope record because records from independent temperature proxies are sparse. Here we present a 25-million-year-long alkenone-based record of surface temperature change from the North Atlantic Ocean. Our long temperature record documents peak warmth (~29 °C) during the middle Eocene, a slow overall decline to the Eocene/Oligocene transition (EOT, ~34 Ma) and high-amplitude variability (between ~28 and 24 °C) during the Oligo–Miocene. The overall structure of the record is similar to that of the deep-sea record, but a distinct anomaly is also evident. We find no evidence of surface cooling in the North Atlantic directly coinciding with the EOT when Antarctica first became cold enough to sustain large ice sheets and subantarctic waters cooled substantially. Surface ocean cooling during the EOT was therefore strongly asymmetric between hemispheres. This transient thermal decoupling of the North Atlantic Ocean from the southern high latitudes suggests that Antarctic glaciation triggered changes in ocean circulation-driven heat transport and influenced the far-field climate response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.