Abstract

In situ high-energy surface X-ray diffraction was employed to determine the surface structure dynamics of a Pd(100) single crystal surface acting as a model catalyst to promote CO oxidation. The measurements were performed under semirealistic conditions, i.e., 100 mbar total gas pressure and 600 K sample temperature. The surface structure was studied in detail both in a steady gas flow and in a gradually changing gas composition with a time resolution of 0.5 s. The experimental technique allows for rapid reciprocal space mapping providing the complete information on structural changes of a surface with unprecedented time resolution in harsh conditions. Our results show that the (√5 × √5)R27°-PdO(101) surface oxide forms in a close to stoichiometric O2 and CO gas mixture as the mass spectrometry indicates a transition to a highly active state with the reaction rate limited by the CO mass transfer to the Pd(100) surface. Using a low excess of O2 in the gas stoichiometry, islands of bulk oxide grow epitaxial...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.