Abstract

Cytochrome aa3-600 or menaquinol oxidase, from Bacillus subtilis, is a member of the heme-copper oxidase family. Cytochrome aa3-600 contains cytochrome a, cytochrome a3, and CuB, and each is coordinated via histidine residues to subunit I. Subunit II of cytochrome aa3-600 lacks CuA, which is a common feature of the cytochrome c oxidase family members. Anaerobic reduction of cytochrome aa3-600 by the substrate analogue 2,3-dimethyl-1,4-naphthoquinone (DMN) resolves two distinct kinetic phases by stopped-flow, single-wavelength spectrometry. Global analysis of time-resolved, multiwavelength spectra shows that during these distinct phases cytochromes a and a3 are both reduced. Cyanide binding to cytochrome a3 enhances the fast phase rate, which in the presence of cyanide can be assigned to cytochrome a reduction, whereas cytochrome a3-cyanide reduction is slow. The steady-state activity of cytochrome aa3-600 exhibits saturation kinetics as a function of DMN concentration with a Km of 300 microM and a maximal turnover of 63.5 s(-1). Global kinetic analysis of steady-state spectra reveals a species that is characteristic of a partially reduced oxygen adduct of cytochrome a3-CuB, whereas cytochrome a remains oxidized. Electron paramagnetic resonance (EPR) spectroscopy of the oxidase in the steady state shows the expected signal from ferricytochrome a, and a new EPR signal at g = 2.01. A model of the catalytic cycle for cytochrome aa3-600 proposes initial electron delivery from DMN to cytochrome a, followed by rapid heme to heme electron transfer, and suggests possible origins of the radical signal in the steady-state form of the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.