Abstract

Transient stability during grid fault is experienced differently in modern power systems, especially in wind-turbine-dominated power systems. In this paper, transient behavior and stability issues of a direct drive wind turbine during fault recovery in DC-link voltage control timescale are studied. First, the motion equation model that depicts the phase and amplitude dynamics of internal voltage driven by unbalanced active and reactive power is developed to physically depict transient characteristics of the direct drive wind turbine itself. Considering transient switch control induced by active power climbing, the two-stage model is employed. Based on the motion equation model, transient behavior during fault recovery in a single machine infinite bus system is studied, and the analysis is also divided into two stages: during and after active power climbing. During active power climbing, a novel approximate analytical expression is proposed to clearly reveal the frequency dynamics of the direct drive wind turbine, which is identified as approximate monotonicity at excitation of active power climbing. After active power climbing, large-signal oscillation behavior is concerned. A novel analysis idea combining time-frequency analysis based on Hilbert transform and high order modes is employed to investigate and reveal the nonlinear oscillation, which is characterized by time-varying oscillation frequency and amplitude attenuation ratio. It is found that the nonlinear oscillation and even stability are related closely to the final point during active power climbing. With a large active power climbing rate, the nonlinear oscillation may lose stability. Simulated results based on MATLAB® are also presented to verify the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.