Abstract
We employ a canonical variational framework for the predictive characterization of structural instabilities that develop during the diffusion-driven transient swelling of hydrogels under geometrical constraints. The variational formulation of finite elasticity coupled with Fickian diffusion has a two-field minimization structure, wherein the deformation map and the fluid-volume flux are obtained as minimizers of a time-discrete potential involving internal and external energetic contributions. To analyze the structural stability of a certain equilibrium state of the gel satisfying the minimization principle, we apply the local stability criterion on the incremental potential, which is based on the idea that a stable equilibrium state has the lowest potential energy among all possible states within an infinitesimal neighborhood. Using this criterion in a finite-element context, it is understood that bifurcation-type structural instabilities are activated when the coupled global finite-element stiffness matrix loses its positive definiteness. This concept is then applied to determine the onset and nature of wrinkling instabilities occurring in a pair of representative film-substrate hydrogel systems. In particular, we analyze the dependencies of the critical buckling load and mode shape on the system geometry and material parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.