Abstract

The second data release from ESA's Gaia mission has revealed many ridge-like structures in the velocity distribution of the Milky Way. We show that these can arise naturally from winding transient spiral structure that is commonly seen in N-body simulations of disk galaxies. We construct test particle models of the winding spiral structure, and compare the resulting distribution of orbits with the observed two-dimensional velocity distribution in the extended solar neighbourhood and with the distribution of rotational velocities over 8 kpc along the Sun--Galactic-centre--Galactic anti-centre line. We show that the ridges in these observations are well reproduced by the winding spiral model. Additionally, we demonstrate that the transient winding spiral potential can create a Hercules-like feature in the kinematics of the solar neighbourhood, either alone, or in combination with a long-slow bar potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.