Abstract
A theoretical analysis of transient sound radiation from a clamped circular plate is obtained using a pressure impulse response method. The vibration response of the plate to a transient point force is obtained. The modal pressure impulse response functions for the plate are derived from the Rayleigh surface integral and numerically convoluted with the modal acceleration response of the plate. The impulse response functions are closely related to the mode shapes and the geometry of the problem. They relate the spatial domain to the temporal domain of the pressure waves. The pressure impulse response waveforms are given for a number of plate modes and the changes in the waveforms with distance from the plate are shown. Sound radiation due to forced and free vibrations of the plate are discussed. The results are compared with those obtained by direct numerical integration of the Rayleigh surface integral and the experiments. [Work supported by WSU and NSF.]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.