Abstract
In ocean surveillance, a number of different types of transient signals are observed. These sonar signals are waveforms in one dimension (1-D). The hidden Markov model (HMM) is well suited to classification of 1-D signals such as speech. In HMM methodology, the signal is divided into a sequence of frames, and each frame is represented by a feature vector. This sequence of feature vectors is then modeled by one HMM. Thus, the HMM methodology is highly suitable for classifying the patterns that are made of concatenated sequences of micro patterns. The sonar transient signals often display an evolutionary pattern over the time scale. Following this intuition, the application of HMM's to sonar transient classification is proposed and discussed in this paper. Toward this goal, three different feature vectors based on an autoregressive (AR) model, Fourier power spectra, and wavelet transforms are considered in our work. In our implementation, one HMM is developed for each class of signals. During testing, the signal to be recognized is matched against all models. The best matched model identifies the signal class. The neural net (NN) classifier has been successfully used previously for sonar transient classification. The same set of features as mentioned above is then used with a multilayer perceptron NN classifier. Some experimental results using DARPA standard data set I with HMM and MLP-NN classification schemes are presented. A combined NN/HMM classifier is proposed, and its performance is evaluated with respect to individual classifiers. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.