Abstract
Reactivity controlled compression ignition (RCCI) combustion in a light-duty multicylinder engine (MCE) over transient operating conditions using fast response exhaust unburned hydrocarbon (UHC1), nitric oxide (NO), and particulate matter (PM) measurement instruments was investigated. RCCI has demonstrated improvements in efficiency along with low NOx and PM emissions by utilizing in-cylinder fuel blending, generally using two fuels with different reactivity in order to optimize stratification. In the present work, a “single-fuel” approach for RCCI combustion using port-injected gasoline and direct-injected gasoline mixed with a small amount of the cetane improver 2-ethylhexyl nitrate (EHN) was studied with custom designed, compression ratio (CR) of 13.75:1, pistons under transient conditions. The EHN volume percentage in the mixture for the direct-injected fuel was set at 3%. In an experimental investigation, comparisons were made to transient RCCI combustion operation with gasoline/diesel. The experiments were performed over a step load change from 1 to 4 bar brake mean effective pressure (BMEP) at constant 1500 rev/min on a General Motors (GM) Z19DTH 1.9-L diesel engine. The transients were conducted by changing the accelerator pedal command to provide a desired torque output with a DRIVVEN engine control unit (ECU) that replaced the original Bosch ECU. All relevant engine parameters are adjusted accordingly, based on 2D-tables. Previous to the transient engine operation, four steady-state points were used to obtain performance and emission values. Engine calibration at these four points, as well as the interpolation of the intermediate points, allowed for smooth operation during the instantaneous step changes. Differences between the steady-state and transient results indicate the complexity of transient operation and show the need for additional controls to minimize undesirable effects. The steady-state points were calibrated by modifying the fuel injection strategy (actual start of injection (aSOI) timing, port-fuel injection (PFI) fraction, etc.), exhaust gas recirculation (EGR), and rail pressure in order to obtain predefined values for the crank-angle at 50% of total heat release (CA50). Furthermore, emission targets (HC1 < 1500 ppmC3, NO < 10 ppm, filter smoke number (FSN)<0.1 with a maximum pressure rise rate (MPRR) < 10 bar/deg) and noise level targets (<95 dB) for RCCI combustion were maintained during the calibration and mapping. The tests were performed with a closed-loop (CL) calibration by using a next-cycle (NC) controller to adjust the PFI ratio of each cycle in order to reach the steady-state CA50 values in the table. The results show that single-fuel RCCI operation can be achieved, but requires significant alteration of the operating conditions, and NOx emissions were significantly elevated for gasoline/gasoline–EHN operation. While combustion phasing could not be matched, UHC1 emissions were at a similar level as for gasoline/diesel combustion. It is expected that the implementation of different injection strategies and boosted operation, combined with use of higher compression ratio pistons in order to compensate for the lower reactivity direct injection (DI) fuel, could raise the potential for improved performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.