Abstract

The trajectory of a cylindrical particle driven by electrophoresis was transiently simulated as the particle moves through a 90° corner. A variety of system parameters were tested to determine their impact on the particle motion. The zeta potential, channel width, and particle aspect ratio were shown to have a minimal effect on the particle motion. Conversely, the initial vertical position of the particle and initial angle with respect to the horizontal had a significant impact on the particle motion. The presence of the 90° corner acts to reduce the initial distribution of angles to the vertical of 90° to less than 30°, demonstrating the possibility of using a corner as a passive control element as part of a larger microfluidic system. However, the reduction in angle is limited to the area near the corner posing a limitation on this means of control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.