Abstract

A bubbling reactor is an important type of gas scrubber to reduce SO2 emissions in maritime shipping. Both experiments and simulations were conducted to study the relationship between the periodic gas bubbling process and SO2 concentration at the outlet of the reactor, and the entrainment of liquid droplets on SO2 absorption. The accuracy of the model was verified by comparing the bubble size, the depth of bubbles injected into the water, and the SO2 concentration obtained in both experiments and simulations. The gas bubbling process is accompanied by bubble formation, rise, and collapse. The gas bubbling period is affected by the disturbance of the liquid level. The period of the SO2 concentration at the outlet of the gas bubbling reactor is smaller than that at the gas jar outlet which acts as the gas buffering region. The amounts of water carried out of the bubbling reactor by the gas bubbling process increase with the gas flow rates. The droplets and liquid film in the gas jar and the connecting tube play an important role in the absorption of SO2. This study encourages more research to reduce the fluctuation of SO2 concentration and consider droplet entrainment in the design of bubbling reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.