Abstract

Laminar methane–air diffusion flame was simulated by coupling a method of lines based parallel direct numerical simulation code with a radiation code based on method of lines solution of discrete ordinates method. The predictions of the code are validated against experimental data as well as numerical results of the same code without radiation model. Comparisons show that incorporation of radiation code to the computational fluid dynamics code results in a significant improvement in the predicted temperatures. Transient results exhibit the physically expected trends. The coupled code is a promising tool for the simulation of transient reacting radiating flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.