Abstract

The bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (G6PD-6PGL) found in Plasmodium falciparum has unique structural and functional characteristics restricted to this genus. This study was designed to examine the effects of RNA-mediated PfG6PD-6PGL gene silencing in cultures of P. falciparum on the expression of parasite antioxidant defense genes at the transcription level. The highest degree of G6PD-6PGL silencing achieved was 86% at the mRNA level, with a recovery to almost normal levels within 24 h, indicating only transient diminished expression of the PfG6PD-6PGL gene. PfG6PD-6PGL silencing caused arrest of the trophozoite stage and enhanced gametocyte formation. In addition, an immediate transcriptional response was shown by thioredoxin reductase suggesting that P. falciparum G6PD-6PGL plays a physiological role in the specific response of the parasite to intracellullar oxidative stress. P. falciparum transfection with an empty DNA vector also promoted intracellular stress, as determined by mRNA up-regulation of antioxidant genes. Collectively, our findings point to an important role for this enzyme in the parasite's infection cycle. The different characteristics of G6PD-6PGL with respect to its homologue in the host make it an ideal target for therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.