Abstract

We study the self-action of an amplitude-modulated beam in a two-level saturable absorbing medium. We also consider the radial quadratic dependence of the linear refraction index to apply the results to doped waveguides. As the modulation period approaches the relaxation times, the medium response is no more instantaneous, so that one should solve the full set of Maxwell-Bloch equations. We propose a second-order scheme with the Gauss-Laguerre transformation of the transverse field pattern. A simplified approach based on the synchronous interaction approximation is used for thin layers. We analyze the transient behavior of the medium response and its manifestation in the modulation of the beam diffracting after a thin saturable absorber. Nonlinear distortions of the modulation signal passed through a doped waveguide appeared to be unexpectedly small compared with those of the local polarization and population difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.