Abstract
Abstract The dynamical response to localized, unsteady tropical heating is studied in a stochastic framework. Spectral statistics of the random wave response are derived from those of tropical convection using the primitive equations for a spherical baroclinic atmosphere. Short-time near-field behavior emerges in the form of a transient wavepacket which disperses away the source region. Two principal components characterize the response: 1) a projection response which matches the vertical scale of the heating and 2) a barotropic response involving Rossby normal modes. The projection response consists of a continuum of frequencies and vertical scales centered about vertical wavelengths twice the effective depth of the heating. This scale discrimination is shown to be insensitive to variations in the heating distribution. The associated disturbance is trapped laterally about the equator but radiates vertically away from the source region. It corresponds to the tropical waves traditionally studied on the equ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.