Abstract

From a structural perspective, the pressure hull is a significant structural component of underwater vehicles, to enable them to withstand environmental loadings such as hydrostatical pressure and underwater explosive loading. Hence, improving configuration design tends to be important for underwater vehicles. Applying a nonlinear FEM/DAA coupling procedure, which addresses the effects of transient dynamic, geometrical nonlinear, elastoplastic material behavior and the fluid structure interaction, this investigation examines the transient dynamic responses of a multiple intersecting spheres (MIS) deep-submerged pressure hull subjected to underwater explosion. The time histories of the wet-surface pressure, displacement, velocity, acceleration, von Mises stress and plastic strain are presented. Additionally, the deformed diagram and velocity distribution of MIS pressure hull are elucidated. The analytical results are valuable for designing novel pressure hulls to resist underwater explosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call