Abstract

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena due to the influence of a non-Gaussian pulsed laser type heat source in a stress free isothermal half-space in the context of Lord–Shulman (LS), dual-phase lag (DPL), and three-phase lag (TPL) theories of thermoelasticity simultaneously. The memory-dependent derivative is defined in an integral form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. Employing Laplace transform as a tool, the problem has been transformed to the space-domain, and it is then solved analytically. To get back all the thermophysical quantities as a function of real time, we use two Laplace inversion formulas, viz. Fourier series expansion technique (Honig in J Comput Appl Math10(1):113–132, 1984) and Zakian method (Electron Lett 6(21):677–679, 1970). According to the graphical representations corresponding to the numerical results, a comparison among LS, DPL, and TPL model has been studied in the presence and absence of a memory effect simultaneously. Moreover, the effects of a laser pulse have been studied in all the thermophysical quantities for different kernels (randomly chosen) and different delay times. Then, the results are depicted graphically. Finally, a comparison of results, deriving from the two numerical inversion formulas, has been made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call