Abstract

The 7 ns 436 nm pulses of an H 2-shifted YAG laser have been used to photolyze the CO adduct of cytochrome- c peroxidase and produce the resonance Raman spectrum of the photoproduct. A 3 cm −1 downshift, relative to the spectrum of reduced enzyme, was observed for the porphyrin C-N breathing mode, v 4. The downshift diminishes with decreasing CO/protein ratio, implying, in conjunction with a recent study of CO binding, that the unrelaxed heme is associated with adduct having a tilted, H-bonded FeCO unit. The downshift is eliminated when the phosphate buffer concentration is increased from 0.01 to 0.1 M. It is proposed that the heme relaxation under study involves a transition between two conformations, B and A, differing in the disposition of the distal residues, and having different v 4 frequencies for unligated Fe(II) heme. Conformation B allows H-bonding to bound CO, and is favored at high CO and phosphate concentrations, while conformation A, which is unfavorable to CO H-bonding, is favored at low CO and phosphate concentrations. The recently reported absence of unrelaxed frequencies in the 7 ns photo-product of the CO adduct of horseradish peroxidase has been confimred, and is attributed to lower stability for conformation B and a smaller A – B v 4 difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.