Abstract
Increasingly complex structures such as optical antennas or cavities are coupled to self-assembled quantum dots to harvest their quantum-optical properties. In many cases, these structures pose a problem for common methods of ultrafast spectroscopy used to write and read out the state of the quantum dot. We present a pure far-field method that only requires optical access to the quantum dot and does not impose further restrictions on sample design. We demonstrate Rabi oscillations and perturbed free induction decay of single GaAs quantum dots that have a dipole moment as small as 18 D. Our method will greatly facilitate ultrafast spectroscopy of complex quantum-optical circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.