Abstract

BackgroundMeiosis is a specialized germ cell cycle that generates haploid gametes. In the initial stage of meiosis, meiotic prophase I (MPI), homologous chromosomes pair and recombine. Extensive changes in chromatin in MPI raise an important question concerning the contribution of epigenetic mechanisms such as DNA methylation to meiosis. Interestingly, previous studies concluded that in male mice, genome-wide DNA methylation patters are set in place prior to meiosis and remain constant subsequently. However, no prior studies examined DNA methylation during MPI in a systematic manner necessitating its further investigation.ResultsIn this study, we used genome-wide bisulfite sequencing to determine DNA methylation of adult mouse spermatocytes at all MPI substages, spermatogonia and haploid sperm. This analysis uncovered transient reduction of DNA methylation (TRDM) of spermatocyte genomes. The genome-wide scope of TRDM, its onset in the meiotic S phase and presence of hemimethylated DNA in MPI are all consistent with a DNA replication-dependent DNA demethylation. Following DNA replication, spermatocytes regain DNA methylation gradually but unevenly, suggesting that key MPI events occur in the context of hemimethylated genome. TRDM also uncovers the prior deficit of DNA methylation of LINE-1 retrotransposons in spermatogonia resulting in their full demethylation during TRDM and likely contributing to the observed mRNA and protein expression of some LINE-1 elements in early MPI.ConclusionsOur results suggest that contrary to the prevailing view, chromosomes exhibit dynamic changes in DNA methylation in MPI. We propose that TRDM facilitates meiotic prophase processes and gamete quality control.

Highlights

  • Meiosis is a specialized germ cell cycle that generates haploid gametes

  • Genome‐wide DNA methylation levels in meiotic prophase I To characterize the dynamics of DNA methylation across MPI, we used an optimized flow cytometry cell sorting method to obtain two biological replicates of spermatogonial (Spg), PL, L, Z, P, D spermatocytes and epididymal spermatozoa (Spz) [27,28,29] (Additional file 2: Fig. S2)

  • We base this conclusion on observations of (a) the initial drop of DNA methylation in PL cells going through meiotic S phase, (b) the genome-wide scope of DNA demethylation, (c) the dynamics of DNA methylation levels of early- and late-replicating domains in PL and L, (d) low expression of genes implicated in active DNA methylation and (e) direct measurement of the dynamics of DNA hemimethylation of L1 elements which allowed us to assess the extent of DNA hemimethylation in thousands of locations throughout the genome

Read more

Summary

Introduction

Meiosis is a specialized germ cell cycle that generates haploid gametes. In the initial stage of meiosis, meiotic prophase I (MPI), homologous chromosomes pair and recombine. Studies over the past decade revealed important roles of DNA methylation, repressive histone modifications and small Piwi-interacting RNAs (piRNAs) in LINE-1 (L1) control in male germ cells [13, 16,17,18]. Despite these defensive mechanisms, early meiotic male germ cells exhibit L1 ORF1p expression albeit at levels significantly lower than those observed in mutants deficient in transposon defense [18,19,20,21,22]. In this study, using this method, we obtained high-quality germ cell samples that allowed us to discover genome-wide transient reduction of DNA methylation (TRDM) during MPI, a previously unrecognized epigenetic feature of meiotic chromosomes in male mice

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call