Abstract

pH changes can influence local blood flow, but the mechanisms of how acids and bases affect vascular tone is not fully clarified. Transient receptor potential vanilloid-1 (TRPV1) channels are expressed in vessels and can be activated by pH alterations. Thus, we hypothesized that TRPV1 channels are involved in the mediation of vascular responses to acid-base changes. Vasomotor responses to HCl, NaOH, and capsaicin were measured in isolated murine carotid and tail skin arteries. The function of TRPV1 was blocked by either of three approaches: Trpv1 gene disruption, pharmacological blockade with a TRPV1 antagonist (BCTC), and functional impairment of mainly neural TRPV1 channels (desensitization). In each artery type of control mice, HCl caused relaxation but NaOH contraction, and both responses were augmented after genetic or pharmacological TRPV1 blockade. In arteries of TRPV1-desensitized mice, HCl-induced relaxation did not differ from controls, whereas NaOH-induced contraction was augmented. All three types of TRPV1 blockade had more pronounced effects in carotid than in tail skin arteries. We conclude that TRPV1 channels limit the vasomotor responses to changes in pH. While base-induced arterial contraction is regulated primarily by neural TRPV1 channels, acid-induced arterial relaxation is modulated by TRPV1 channels located on nonneural vascular structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call