Abstract

The transient receptor potential vanilloid 1 (TRPV-1) is an ion channel found on primary sensory afferent neurons. Activation of TRPV-1 leads to the release of the proinflammatory neuropeptide substance P (SP). SP then binds to the neurokinin-1 receptor (NK1-R) on endothelial cells and promotes extravasation of plasma and proteins into the interstitial tissue and neutrophil infiltration, a process called neurogenic inflammation. We tested 2 hypotheses: (1) activation of TRPV-1 in the pancreas leads to interstitial edema and neutrophil infiltration and (2) TRPV-1-induced plasma extravasation is mediated by the release of SP and activation of the NK1-R in the rat. We measured extravasation of the intravascular tracer Evans blue as an index of plasma extravasation and quantified pancreas tissue myeloperoxidase activity (MPO) as a marker of neutrophil infiltration. The severity of inflammation following intravenous infusion of the secretagogue cerulein (10 microg/kg/h x 4 hours) was assessed using a histologic scoring system. Intravenous injection of the TRPV-1 agonist capsaicin induced a dose-dependent increase in Evans blue accumulation in the rat pancreas (P < 0.05 vs. vehicle control). This effect was blocked by pretreatment with the TRPV-1 antagonist capsazepine (1.8 mg/kg), or the NK1-R antagonist CP 96,345 (1 mg/kg). Capsazepine also reduced cerulein-induced Evans blue, MPO, and histologic severity of inflammation in the pancreas but had no effect on serum amylase. Activation of TRPV-1 induces SP-mediated plasma extravasation in the rat pancreas via activation of the NK1-R. TRPV-1 mediates neurogenic inflammation in cerulein-induced pancreatitis in the rat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call