Abstract

The interaction between yeast iso-1-cytochrome c (C102T) and two forms of bovine adrenodoxin, the wild type and a truncated form comprising residues 4-108, has been investigated using a combination of one- and two-dimensional heteronuclear NMR spectroscopy. Chemical shift perturbations and line broadening of amide resonances in the [(15)N,(1)H]HSQC spectrum for both (15)N-labeled cytochrome c and adrenodoxin in the presence of the unlabeled partner protein indicate the formation of a transient complex, with a K(a) of (4 +/- 1) x 10(4) M(-)(1) and a lifetime of <3 ms. The perturbed residues map over a large surface area for both proteins. For cytochrome c, the dominating effects are located around the exposed heme edge but with other areas also affected upon formation of the complex. In the case of adrenodoxin, effects are seen in both the recognition and core domains, with the largest perturbations in the recognition domain. These results indicate that the complex has a dynamic nature, with delocalized binding of cytochrome c on adrenodoxin. A comparison with other transient complexes of redox proteins places this complex between well-defined complexes such as the cytochrome c-cytochrome c peroxidase complex and entirely dynamic complexes such as the cytochrome b(5)-myoglobin complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.