Abstract

To improve the efficiency and accuracy of transient probabilistic analysis of flexible multibody systems, a dynamic fuzzy neural network method-based distributed collaborative strategy is proposed by integrating extremum response surface method and fuzzy neural network. Distributed collaborative dynamic fuzzy neural network method is mathematically modeled and derived by considering the high nonlinearity, strong coupling, and multicomponent characteristics of a flexible multibody system. The proposed method is demonstrated to perform the transient probabilistic analysis of a two-link flexible robot manipulator. We obtain the distributional characteristics, reliability degree, and sensitivity degree of robot manipulator, which are useful for the effective design of robot manipulator. By comparing the full-scale method, extremum response surface method, dynamic fuzzy neural network method, and distributed collaborative dynamic fuzzy neural network method, we find that the distributed collaborative dynamic fuzzy neural network method can be used to perform the transient probabilistic analysis of the robot manipulator and improve the computational efficiency while maintaining a good accuracy. Moreover, this study offers a useful insight for the reliability-based design optimization of flexible multibody systems, and enriches the field of mechanical reliability theory as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call